Utility Experience in the Pacific region

with high penetration VRE

Workshop on High Penetration-Variable Renewables in Pacific Island Countries; Small grids and Off-grid

> 7 December, 2018 UNSW, Sydney, Australia Andrew Daka Executive Director, PPA

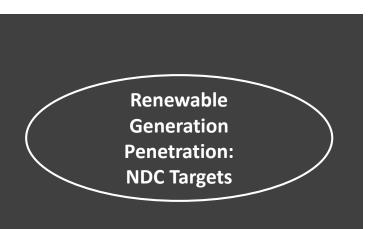
OUTLINE

- 1. The Pacific Power Association (PPA)
- 2. Pacific's Renewable Energy Targets and Nationally Determined Contributions
- 3. Trends and Developments in Solar
- 4. Specific Examples
- 5. PPA's Sustainable Energy Industry Development Project
- 6. Future of Renewable Energy is the Pacific

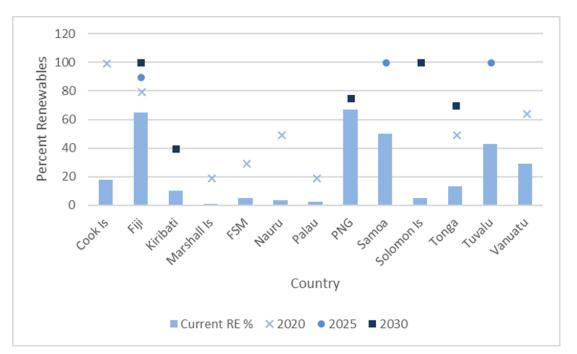
The Pacific Power Association

- Established in 1992, Secretariat based in Suva, Fiji Islands
- Membership 25 Electric Utilities, 104 Private Sector Entities and 24 Development Partners, Regional and International Organizations

Pacific Power Association - Utilities



Vision


Access to sustainable and quality electricity services for the people of the Pacific Islands Region.

Mission

To support the Pacific Islands Country and Territory (PICT) power utilities in the provision of high quality, secure, efficient and sustainable electricity services.

A natural fit between NDC targets and uptake of renewables

Technology Options

- Solar PV is dominating the current market; intermittency a challenge
- Hybrid models of diesel/solar PV or diesel/wind reflect transition from diesel dependence
- Larger scale hydro-electric opportunities central to PNG, Fiji and Solomon Islands
- Wind being considered; important role to offset storage needs
- Pumped storage a possibility; relatively high cost but viable storage option with current BESS costs
- Geothermal identified and being investigated – no immediate projects

Trends in RE Development in the Pacific

Larger Scale PV Projects

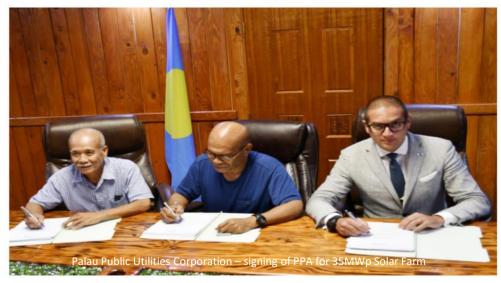
- greater contribution from RE
- Diesel abatement

Outer Island Hybrid Microgrids

- improve access
- reduce cost of supply
- improve reliability of existing networks

Energy storage

- voltage and frequency stability
- diesel abatement



Home > Top Stories > Palau inks Power Purchase Agreement with ENGIE Eps

Palau inks Power Purchase Agreement with ENGIE Eps A Rhealyn Pojas 12 Oct 2018

Utility RFPs

American Samoa Power Authority – 30 to 35MW Wind Generation

Tonga Power Ltd – 5.1MW with 2.5MWh ESS

RE Investor Forum @ 27th Annual PPA Conference identified that significant RE potential – estimated \$1 billion required if countries are to meet their 2025 NDC targets – excluding PNG (~\$1.5 b)

TARO ISLAND, SOLOMON ISLANDS- 224 KWP HYBRID SYSTEM

SOLOMON POWER – SOLOMON ISLANDS

	Taro Island – 224 kWp Hybrid System	Seghe 168 kWp Hybrid System	
Energy Forecast	260,000 kWh per year	200,000 kWh per year	
PV Array	224kWp-800 X Trina Honey 280W	168kWp-600 X Trina Honey 280W	
String Inverters	200 kW – 8 X STP25000TL-30	150 kW – 6 X STP25000TL-30	
SMA Sunny Islands	108 kW – 6 Clusters of S18.OH	90 kW – 5 Clusters of S18.OH	
Battery Bank	1.58 MWh	1.01 MWh	
PV Contribution	86.3%	87.7%	
Generator hours /year	362	291	
Diesel litres/year	10,270	7,109	
Battery design life (years)	9.9 (35 degs C)	8.9 (35 degs C)	
Battery Bank Autonomy to 40% SOC	31.9 hours	26.6 hours	

POWER ASSO

HA'APAI, KINGDOM OF TONGA – 224 KWP HYBRID SYSTEM

Location	Installed Capacity (kWp)	Storage Capacity (kWh)	Back up Genset (kw)	% Energy Contribution	
Phase 1 - Existing Systems					
Ha'apai	550	330	Grid	50	
Lifuka	550	330	Grid	50	
Phase 2 – Planned					
Nomuka	100	210	50	50	
'Uiha	100	210	50	50	
Ha'ano	100	210	50	50	
Ha'afeva	60	110	30	50	
Niuatoputapu	150	295	80	50	

TA'U ISLAND, AMERICAN SAMOA – 1.4MW HYBRID SYSTEM

Location Ta'u Island, American Samoa

Project Size 1.4 MW Solar PV 6 MWh storage

Distributed Energy Resource Solar PV

Applications Off-grid Microgrid Diesel abatement Reduced O&M

Commissioned 2016

Location Ofu Island, American Samoa

Project Size 342 kW Solar PV 1 MWh storage

Distributed Energy Resource Solar PV

Applications Off-grid Microgrid Diesel abatement Reduced O&M

Commissioned 2016

Storage – an essential investment

Examples:

Operating Facility:

- Electric Power Corporation of Samoa 13.4 MWh storage to cope with 14 MW of PV now in system. Operations demonstrated reduced cost of diesel generation and value of grid stability – 48% RE in 2017/2018.
- Cook Islands 6.3MWh of storage in system with 4 MW of PV with additional 2 MW of PV planned

Planned development:

 Tonga Power Ltd – proposed GCF funding for 10MW/20MWh of storage

SAMOA

Location Upolu Island, Samoa

Project Size 13.6 MWh storage

Distributed Energy Resource Solar PV (x2) Hydro Wind

Applications Diesel abatement Voltage & Frequency Support

Commissioned 2018

Location Rarotonga Airport, Cook Islands

Project Size 6.3MWh storage

Distributed Energy Resource Solar PV

Applications Diesel abatement Voltage & Frequency Support

Commissioned November, 2018

Lessons Learned

- Experience in Design, Approval, Tendering, construction, installation and commissioning.
- Sizing of PV to match the load profile curtailing
- Remote location presents challenges- weather, materials, logistics
- Civil contractors capability.
- Availability of locals with necessary skills
- Up skilling for operational staff

Pacific Islands Sustainable Energy Industry Development Project

Helping Pacific power utilities incorporate renewable energy technologies and manage energy sector resilience

PROJECT COMPONENTS

Component 1: Resource Mapping (US\$2.27m) Phase 1: Preliminary assessments (solar/wind)Phase 2: Ground-based data collectionPhase 3: Validated resource maps

Component 2: Technical Assistance (US\$2.57m)

- Modeling software for RE integration and capacity building
- Online power benchmarking platform
- Industry guidelines and competency standards
- Training/workshops
- Career development initiatives for power utilities
- Support from the Global Partnership on Social Accountability (GPSA) for citizen engagement
- Assistance with mainstreaming gender equity/equality in the power sector
- Disaster-recovery and risk-reduction activities for power utilities.

Component 3: Project Implementation Support (US\$0.82m) Building PPA's capacity for overall project coordination, management and monitoring including technical operation, procurement, financial management, environmental and social management, gender action plan implementation, monitoring and evaluation, and reporting

Future of RE in the Pacific

- PV will continue to be focus especially for smaller nations
- Private sector investment crucial
- Storage will play an important role
- Regulatory reforms need to take place

